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Introduction Graphical Models
Message Passing/ Belief Propagation
Gauge Transformations & Loop Calculus

Binary Graphical Models

Forney style - variables on the edges

P@&) = Z [ f(5) £,>0

Z:ZHfa(o—:a) Oab = Opa = *1

partition function

71 = (012,014, 018)

72 = (012,023)

@ Most Probable Configuration = Maximum Likelihood =
Ground State: arg max P(&)

o Marginal Probability: e.g. P(0a5) = >_5\,,, P(7)
e Partition Function: Z — Our main object of interest
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Introduction Graphical Models
Message Passing/ Belief Propagation
Gauge Transformations & Loop Calculus

BP is Exact on a Tree Bethe '35, Peierls '36

— -
( \ ) Zs1(0s1) = fi(os1),  Zs2(0s2) = fa(0s2),
~- Rk Z63(063) = 13(063), ~64(06a) = fa(064)
65(0s6) = Y f(0s5) Zo1(051) Zsa(052)
@ - Fs\ose
o © > Z = Z fs(F6) Z63(063) Zoa(064) Zos(T65)
N~ — 06

Zba(o'ab): Z fa(o_:a)zac(olac)zad(aad) = Zab(Uab):AabeXp(T/abUab)

Ea\gab

Belief Propagation Equations

Z f:a(&’a) exp(z nacUac) (Uab — tanh (nab + 77ba)) =0

Ga cEa

e.g. Thouless-Anderson-Palmer (1977) Egs.
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Introduction Graphical Models
Message Passing/ Belief Propagation
Gauge Transformations & Loop Calculus

Belief Propagation (BP) and Message Passing

@ Apply what is exact on a tree (the equation) to other problems on graphs with
loops [heuristics ... but a good one]

@ To solve the system of N equations is EASIER then to count (or to choose one
of) 2N states.

Bethe Free Energy formulation of BP [Yedidia, Freeman, Weiss '01]

Minimize the Kubblack-Leibler functional

o o b({c}) Difficult/Exact
Fib({o})} = Zb({ })In Z{o))
under the following almost variational” substitution” for beliefs:
I1; b(cr,)H bi(a’) . Easy/Approximate
————  [trackin
b({o}) = Ty £/ [ gl

@ Message Passing is a (graph) Distributed
Implementation of BP

@ Graphical Models = the language
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Introduction Graphical Models
Message Passing/ Belief Propagation
Gauge Transformations & Loop Calculus

Gauge Transformations Chertkov, Chernyak '06

Local Gauge, G, Transformations

Z= ZHa fa(&a)a Ta = (Uabagac,' : )

Oap = Opa = £1

fa(Ga = (0ab, - )) —
ZU;b Gab (Jabv J;b) fa(af?b’ o )
Yo,y Gab(Tab, 0') Gpa(0ap, 0”") = 6(0”, ")

Gea

The partition function is invariant under any G-gauge!

7 = Z [1%:@G2) = Z H(Z £2(35) [ | Gav(orab, a’ab))

bea
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Introduction Graphical Models
Message Passing/ Belief Propagation
Gauge Transformations & Loop Calculus

Belief Propagation as a Gauge Fixing Chertkov, Chernyak '06
2=Y 114 = ZH(ZW I Gl ab))
bea
Z=  Z(G) + > Z:(G)
all possible colorings of the graph
ground state P & grap
F=41 3#4+1, excited states
Va& Vbe a:
c#b
S 6(#) 6 (0a6 = —1,04) [] 627 (+1,0%) =0
) cca

No loose BLUE=colored edges at any vertex of the graph!

http://cnls.lanl.gov/~chertkov/Talks/IT/bp&beyond.pdf Belief Propagation & Beyond


http://cnls.lanl.gov/~chertkov/Talks/IT/bp&beyond.pdf

Introduction

Graphical Models
Message Passing/ Belief Propagation
Gauge Transformations & Loop Calculus

Belief Propagation as a Gauge Fixing (I1)

s+ ~(by czb g
¥ 666 (~1,04) T1 6P (+1,00) =0
o'y c€a =
S o, Gab(0abr ') Gba(0apr 0'') = 6(0”, o)
ab

Belief Propagation in terms of Messages

exp (o7)

G(bp)(+1 0)= ——————
2\/C°5h(7]ab ar 77ba)

Z fa(ga) €Xp Z Oacllac (Uab — tanh (nab aF nba)) =0

Fa cea

sum— product

c#b
6(&) [[ 6P (+1,000)

cEa

by
67 P>
o'a\oly,

pa= X (&) I 612
=

FFiL a;b) = p;l

(+1,0%)
cE€a

exp (_Unba)

bp)
1 o———————
( U) 2\/c°5h(7lab + 77ba)

(Ea) eXP(Z bEa Uabnab)

ba(ga) = T fa(aa)exp(zbea U'abnab)’

exp(a(1ab+1ba))
o eXP(U(Uab-i-?]ba))

bab(g) =
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Introduction Graphical Models
Message Passing/ Belief Propagation
Gauge Transformations & Loop Calculus

Loop Series:

Exact (!!) expression in terms of BP

z=>"1I%G) =2 <1+Zr(C)>
Gy 4 C

Hﬂa

(0= =2 =] ia
M - m,) lel

(ab)eC

C € Generalized Loops = Loops without loose ends

Z b Ja)a b
Z b3 bp a) H Oab — mab)

be€a,C

Chertkov,Chernyak '06

The Loop Series is finite
All terms in the series are
calculated within BP

BP is exact on a tree

BP is a Gauge fixing condition.
Other choices of Gauges would
lead to different representation.
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Introduction Graphical Models
Planar Graphical Models Message Passing/ Belief Propagation
The Story of Permanent Gauge Transformations & Loop Calculus

BP (Loop Calculus) + results ('06-...)

... not discussed today ...

@ Exact Algorithm & Efficient Truncation of Loops [V. Gémez, J.M. Mooij, H.J.
Kappen '06]

@ Improving LP/BP decoding with loops [MC '07]
Loop Tower (general finite alphabet) [VC,MC '07]

@ Low bound on partition function for some special (attractive) graphical models
[Sudderth, Wainwright, Willsky '07]

@ Fermions & Loops, e.g. monomer-dimer =series over dets [VC,MC '08]

@ Counting Independent Sets Using the Bethe Approximation [V. Chandrasekaran,
MC, D. Gamarnik, D. Shah, J. Shin '09]

@ Beyond Gaussian BP (det=BP*det & orbit product) [J. Johnson, VC, MC
'09-'10]

@ ... also ... Particle Tracking (Learning with BP), Phase Transitions in Power
Grids, Interdiction and OTHER APPLICATIONS

@ BP+ and gauges on planar and surface graphs [VC, MC '09-'10]
@ BP+ for Permanents (of non-negative matrices) [Y. Watanabe, MC '09]
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Dimer and Ising Models on Planar Graphs

Planar Graphical Models ; a
P Planar (and surface) graphical models which are det-easy

Outline

© Planar Graphical Models
@ Dimer and Ising Models on Planar Graphs
@ Planar (and surface) graphical models which are det-easy
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Dimer and Ising Models on Planar Graphs

Planar Graphical Models ; a
P Planar (and surface) graphical models which are det-easy

Glassy Ising & Dimer Models on a Planar Graph

Partition Function of J;; = 0 Ising Model, o; = £1

T

7= e <Z(u)er JijUiO'j> ! : /
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Dimer and Ising Models on Planar Graphs

Planar Graphical Models ; a
P Planar (and surface) graphical models which are det-easy

Ising & Dimer Classics

L. Onsager, Crystal Statistics, Phys.Rev. 65, 117 (1944)

M. Kac, J.C. Ward, A combinatorial solution of the Two-dimensional Ising
Model, Phys. Rev. 88, 1332 (1952)

@ C.A. Hurst and H.S. Green, New Solution of the Ising Problem for a
Rectangular Lattice, J.of Chem.Phys. 33, 1059 (1960)

@ M.E. Fisher, Statistical Mechanics on a Plane Lattice, Phys.Rev 124, 1664
(1961)

@ P.W. Kasteleyn, The statistics of dimers on a lattice, Physics 27, 1209 (1961)

@ P.W. Kasteleyn, Dimer Statistics and Phase Transitions, J. Math. Phys. 4, 287
(1963)

@ M.E. Fisher, On the dimer solution of planar Ising models, J. Math. Phys. 7,
1776 (1966)

@ F. Barahona, On the computational complexity of Ising spin glass models,
J.Phys. A 15, 3241 (1982)
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Dimer and Ising Models on Planar Graphs

Planar Graphical Models ; a
P Planar (and surface) graphical models which are det-easy

Pfaffian solution of the Matching problem

1 3
1 3
Z = 212234—|-214223 =V Det Pf[A]
0 —zizp 0 —z14
1 3
A— | ta2 0 +z3 —2z:
0 —z3 0 +z34
+z14 +2z4 —2z34 O
Odd-face [Kasteleyn] rule (for signs) 1 3

Direct edges of the graph such that
for every internal face the number of
edges oriented clockwise is odd
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Dimer and Ising Models on Planar Graphs

Planar Graphical Models R A
P Planar (and surface) graphical models which are det-easy

Planar Spin Glass and Dimer Matching Problems

The Pfaffian formula with the “odd-face” orientation rule extends
to any planar graph thus proving constructively that

@ Counting weighted number of dimer matchings on a planar
graph is easy

o Calculating partition function of the spin glass Ising model on
a planar graph is easy

Planar is generally difficult [Barahona '82]

@ Planar spin-glass problem with magnetic field is difficult

@ Dimer-monomer matching is difficult even in the planar case
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Planar Graphical Models Dimer and Ising Models on Planar Graphs

Planar (and surface) graphical models which are det-easy

Are there other (than Ising and dimer) planar graphical models which are
det-easy?

Holographic Algorithms [Valiant '02-'08]

@ reduction to dimers via

@ ‘“classical” one-to-one gadgets
(e.g. Ising model to dimer model)
@ ‘“holographic” gadgets (e.g. )

@ resulted in discovery of variety of new easy planar models

<

Gauge Transformations [Chertkov, Chernyak '06-'09]

@ Equivalent to the holographic gadgets
(different gauges = different transformations)

@ Belief Propagation (BP) is a special choice of the gauge freedom ...
other gauges may also be useful
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PI Graphical Model Dimer and Ising Models on Planar Graphs
anar Lraphica’ Vioce's Planar (and surface) graphical models which are det-easy

BP+ for Planar [degree < 3]

Loop Series (general)
[MC,Chernyak '06]

Z:Z()-Z, ZE].—I—ZCI’C

Summing 2-regular (closed curve) partition is det-easy!!
[MC,Chernyak, Teodorescu '08]

Zs = Zo + Zs, Zs = 1+ Zzaeegc’ [0(a)lc=2 rc [JSTAT '08]

Efficient Approximate Scheme ==
[Gomez,MC,Kappen '09]

http://arXiv.org/abs/0901.0786 ; . I
UAI, 2009 + to appear in JML '10 . \\

http://cnls.lanl.gov/~chertkov/Talks/IT/bp&beyond.pdf

Belief Propagation & Beyond


http://arXiv.org/abs/0901.0786
http://cnls.lanl.gov/~chertkov/Talks/IT/bp&beyond.pdf

Dimer and Ising Models on Planar Graphs
Planar (and surface) graphical models which are det-easy

Planar Graphical Models

Easy Models of degree < 3  [MC,Chernyak, Teodorescu '08]

Generic planar problem is difficult |

®
(b)
A planar problem is easy if @@@w@

@ All (!!) “three-colorings” are zero after a
BP-transformation [BP gauge= all (!!)
(c) [ IL ]I I[ 1@

“one-colorings” are zero]
“three-colorings” are shown in red
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Planar Graphical Models Dimer and Ising Models on Planar Graphs
P Planar (and surface) graphical models which are det-easy

Easy Models of degree < 3 (lI)

To describe the family of easy edge-binary models of degree not larger
than three (partition function is reducible to Pfaffian of a
|G1| x |G1|-dimensional skew-symmetric matrix) one needs to:

Item #1: Generate an arbitrary factor-function set which \( \(
satisfies: Va: W(@(5,) =0 if Y, .0 # 0(mod 2) Y \(

Item #2: Apply an arbitrary skew-orthogonal Gauge-transformation:

W (r,) — fo(ma) = (H Gab(wam;b)> W ()

! b~a
Ta

V{a, b} € G1 : Z Gap(m, 7' ) Gpy(m, ') = 5(x”, ='")

z=3 I fr=a=3 11 (Z (H Gab(«ab»w;b)) W‘”(m))

™ a€G ™ a€G

’

b~a
Ta

Generalize construction (ltem #1) to degree> 3 [ltem #2 is already generic]

Belief Propagation & Beyond
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Dimer and Ising Models on Planar Graphs

Planar Graphical Models Planar (and surface) graphical models which are det-easy

Easy Planar and Surface Models of arbitrary degree [MC,VC '09-]

@ We constructed the family of graphical models of a given planar
graph which are det-easy arXiv:0902.0320

@ We generalized this construction to g-surface graphs (graphs
embedded into a surface of genus g): Described a family of
graphical models defined on a given g-surface graph which are
surface-easy = partition function is a sum of 2% dets

Family of computationally tractable planar and surface graphical models

Applications in IT (capacity, decoding) and CS (counting, inference)

http://cnls.lanl.gov/~chertkov/Talks/IT/bp&beyond.pdf Belief Propagation & Beyond


http://cnls.lanl.gov/~chertkov/Talks/IT/bp&beyond.pdf

BP for Permanent

The Story of Permanent Loop Calculus, Lower and Upper Bounds for Permanent

Outline

© The Story of Permanent
@ BP for Permanent
@ Loop Calculus, Lower and Upper Bounds for Permanent
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BP for Permanent
Loop Calculus, Lower and Upper Bounds for Permanent

The Story of Permanent

Tracking Particles = Motivational Example

(]

] £({o}16) = ¢ {oh) T [P (xin¥ '9”0{
) (i)

(&3 C({U})EH5<ZO{,1>H6 P!
j i J

i
()

Surprising Exactness of BP for ML-assignement

@ Exact Polynomial Algorithms (auction, Hungarian) are available for the problem

@ Generally BP is exact only on a graph without loops [tree]

@ |In this [Perfect Matching on Bipartite Graph] case it is still exact in spite of
many loops!! [Bayati, Shah, Sharma '08], also Linear Programming/TUM
interpretation [MC '08]

Computing permanent of a positive matrix (weighted number of possible matchings) is
an important subtask [MC, Kroc, Krzakala, Vergassola, Zdeborova '09]

v
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BP for Permanent

The Story of Permanent Loop Calculus, Lower and Upper Bounds for Permanent

BP for Permanent

The Graphical Model

o=(cl=0,1i,j=1,--- ,NstVi: 3

Plo) = P(o)/Z = (p])"/T/2, Z=¥,(p)"
Fep=E—TS, E{B} =Y, 0 log(p)
S{8} = S (1 - B (1 - ) - Bin )

conditions: Vi : ZJ. ﬂ{: = 1 Vj 216{ =1

od=1&V: Y,0=1)

1 1

N

BP equations

(i) Bl =Bl = ()T exp (i + 1)
e Dl =t W g =1
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BP for Permanent
Loop Calculus, Lower and Upper Bounds for Permanent

The Story of Permanent
BP for Permanents (I1) [Y.Watanabe & MC '09]

Example: Homogeneous weight model biased towards a perfect solution
@ N.(i)=i:p,=1ifi#jand p} =W(W > 1)
{16(N1) ifi=
€

:otherwise,

@ Looking for solution in the form: ﬁ{(T) =

@ A nontrivial BP solution, ﬁ{ # 0,1 for all (i,j) € E, is realized only at
T>Te=InW/In(N—1).

(b) TInZvs T. (c) In(Z/Zgp) vs T for
different estimators.

Proposition: The threshold behavior is generic!

det(P! — 20, (j);P)) = 0 is eq. for Tc, where M, is the ML solution.

http://cnls.lanl.gov/~chertkov/Talks/IT/bp&beyond.pdf Belief Propagation & Beyond


http://cnls.lanl.gov/~chertkov/Talks/IT/bp&beyond.pdf

BP for Permanent

The Story of Permanent Loop Calculus, Lower and Upper Bounds for Permanent

Three faces of Loop Calculus for Permanent

Z=2Zppxz, z=1+Ycrc, rc=([ljcc(l—a)) (Hje(,‘(l qJ)) i jec lﬁjﬁ,

v

2N 1 N
7= O Z(p1y P p”)

3p1~~8pN8p1-~-8pN

Main Theorem of [arxiv:0911.1419 Y. Watanabe & MC '09]

Z = perm(P) = Zgp * perm(B. x (1 — 3)) H(i,j)eE(l — [3{)*1
where [ is the double-stochastic BP-solution matrix for P
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BP for Permanent

The Story of Permanent Loop Calculus, Lower and Upper Bounds for Permanent

Upper and Lower Bounds for Permanent [Y. Watanabe & MC '09]

Gurvits (2008)-van der Waerden (1926) Theorem

For an arbitrary non-negative N X N matrix A, perm(A) > cap(pA)NT’:I, where
pa() =11; 5 2%, cap(pa) = inf, gy PC

<

Application of the Gurvits-van der Waerden Theorem to the Loop Series yields

@ The low bound is invariant wrt BP transformation
ingl
@ perm(B.* (1= ) > a (i jyee(l — 8D

Another (dominating at high temperature) low bound on the Loop Series

perm(B. x (1 — 3)) > 2H;ﬁ?(i)(1 _ 6;1(;))

Upper Bound following from the Godzil-Gutman representation for permanent

perm(8. x (1 —3)) < [I;(1 - Z:(ﬁ'r’)2)
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BP for Permanent
Loop Calculus, Lower and Upper Bounds for Permanent

The Story of Permanent

Summary of the Permanent Story

Selling: arxiv:0911.1419

@ Threshold behavior of BP solution wrt temperature

@ New low and upper bounds for permanent based on Loop
Calculus

y

@ Improved Algorithm correcting permanent beyond BP

@ New Applications for the technique
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Example (1):

Ising model o ==+1
P(F) = Z Lexp (Z(iJ) J,-J'U,'aj)

Jjj defines the graph (lattice)

v

Graphical Representation

Variables are usually associated with vertexes ... but transformation to
the Forney graph (variables on the edges) is straightforward

A\

@ Ferromagnetic (J;j < 0), Anti-ferromagnetic (J; > 0) and Frustrated/Glassy
@ Magnetization (order parameter) and Ground State
@ Thermodynamic Limit, N — oo

@ Phase Transitions
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Example (2):

Probabilistic Reconstruction (Statistical Inference)

Oorig

original

data
5orig eC
codeword

noisy channel

P(x]5)

X

corrupted
data:
log-likelihood

magnetic field

statistical

inference

QL

possible
preimage

cgel
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Example (2):

Probabilistic Reconstruction (Statistical Inference)

= % N
corrupted

noisy channel data: statistical

P()?|5) log-likelihood inference

magnetic field

QL

possible
preimage

cgel
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Example (2):

Probabilistic Reconstruction (Statistical Inference)

= X =
corrupted
noisy channel data: statistical
73()_('|5) log-likelihood inference

magnetic field

Qu

possible
preimage
gecC
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Example (2):

Probabilistic Reconstruction (Statistical Inference)

= X = o
corrupted .
. o possible
noisy channel data: statistical .
2= - . reimage
P(X|U) log-likelihood inference po__, c Cg
magnetic field

Maximum Likelihood

Marginalization

ML(X) = arg max P(X|7) o7 (X) = arg max Z P(X|5)

5\0’,‘

Counting (Partition Function): Z(X) =5 P(X|&)
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Grassmann (fermion, nilpotent) Calculus for Pfaffians

Grassman (nilpotent) Variables on Vertexes

Y(a,b) € Ge: 0,05+ 050, =0 /dazo, /0d0:1

Pfaffian as a Gaussian Berezin Integral over the Fermions

foo (27

D
)>>
Dy
>

) = 4/ det(

>

) df = Pf(
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Ice Model [vertexes of max degree 3]

#PL-3-NAE-ICE [Valiant '02]

@ Input: A planar graph G = (V;E) of maximum degree 3.
@ Output: The number of orientations (arrows) such that no node has all the
edges directed towards it or away from it.

From arrows to binary variables

Zice = (H fa(*a)) ( 11 ga—b(“'a,a—b”b,a—b))

acgg {a,b}€G;

@ Edge {a, b} is broken in two by
insertion of a — b vertex

. . . 1, 3b,c€dg(a), st mua_bF Taa_

@ Introduce binary variables s.t. if { 0 ¢ et »ee

a—b=maap=0,mp,p=1 / { 1 maa—b 7 Tba—b

baa:>7ra,a,b:1,7rb,a,b=0 0 otherwise
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Ice Model [vertexes of max degree 3] Il

General Gauge Transformation

fa(ma) — fa(ma) = > (H Gab(Tab, ‘";b)> fa(ml)

’ ~
£ b~a

V{a, b} € G1: Y Gap(m, 7' )Gpa(m, m'") = 5(x", ="")

Z= Z H ?-9(""3) = Z H (Z (H Gab("abvﬂ';b)) fa(”"a))

T a€gGg 7 acGy \ w4 \b~a

Gauge Transformation for the lce model
) 1, Ta,a—b = Tba—b =0
(icey _ 1 ( 1 1 ) . n_ ’ _ 5 _
Goasb= 7 Bap(ml) =4 =1, Taa p=Tpap=1
BA=e V2 =1 i ° ° 0, o2 otherwisae

f:a("a,a—lﬂ Ta,a—2> 7ra,a—3) == * i Taa—i =2

. 3 1, Taa—1 = Ta,a—2 = Ta,3—3 =0
—1/3,
0, otherwise

N
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Edge-Binary Wick Models (of arbitrary degree)
Kasteleyn Conjecture for Dimer Model on Surface Graphs

Edge Binary Wick (EBW) Models [Chernyak, MC '09]

Auxiliary Material for Planar & Surface

> amb Yab#0

= (b)
Zegw (W) = Z H Wi and={ala~bias=t}
vY={"ab} €21(G:Z2) beGy

e All odd weights are zero

number of crossings (mod 2)

e Even (d > 2) weights are expressed B
via pair-wise weights e
() ®) ) 2. Gt Cotey ®)
= = (— PIEE .
W{alr“ okt T Wg,aln-an* Wﬁ,al' oK (=1 »* H Wa(P)
£EP([2k—1]) PEE

Examples of 6-colorings and extensions of a EBW-model 6 vertex

W6 Was W3y [zero crossing] — Wi W35 Wyg [one crossing] Wi3 Wos Wye [two crossings]  — Wja Was Wag [three crossings]
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Edge-Binary Wick Models (of arbitrary degree)
Kasteleyn Conjecture for Dimer Model on Surface Graphs

Auxiliary Material for Planar & Surface

Edge Binary Wick Models (I1)

Known Easy Planar Graphical Models & EBW

d a gauge transformation reducing any easy planar model to a EBW
@ Dimer Model

Ising Model

°
@ lce Model
°

Possibly all models discussed in the “holographic” papers

Any EBW model on a planar graph is EASY

Equivalent to Gaussian Grassman Models on the same graph

Partition function is Pfaffian of a |G1| x |G1| matrix
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- . Edge-Binary Wick Models (of arbitrary degree)
Auxiliary Material for Planar & Surface Kasteleyn Conjecture for Dimer Model on Surface Graphs

Related Grassmann/Fermion Models

Vertex Gaussian Grassmann Graphical (VG®) Models

(@) /(2 1
[ ep (% (bqagﬂegl PabSpe Wy LPac) exp (5 Y (a,b)€64 ‘PabgabWba) (;[b) deap
[ exp (% Y (ab)eGy %bf’ab%a) (Hb) deap
a,

M, Hy = { ﬂ({? thi),
(H(s,0:0))

ZVG3(" o; W)

i = (a,b) & j = (a,c), where b # c ~ a,
Tabs i=(a,b), &j=(b,a).

Grassmann (anti-commuting) variables: V(a, b), (¢, d) € G1  YapPed = —PcdPab
Berezin (formal) integration rules: V(a,b) € G1 : [ dpa =0, [ @apdpa, =1

v

Main Theorem of [Chernyak,MC '09/planar]
Q@ Jdo,¢==+1:

st Zyga(s, o3 W) = Zegw (W)

@ The special configuration of o, ¢ corresponds to Kastelyan (spinor) orientation
on the extended planar graph
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- . Edge-Binary Wick Models (of arbitrary degree)
Auxiliary Material for Planar & Surface Kasteleyn Conjecture for Dimer Model on Surface Graphs

Dimer Model on Surface Graphs (I)

Partition function of dimer model on a surface graph of genus g is
expressed in terms of a (£1)-weighted sum over 228 determinants

= surface-easy
o Kasteleyn '63;'67 - non-constructive (??) conjecture
@ Gallucio, Loebl '99 - first [combinatorial] proof

@ Cimasoni, Reshetikhin '07 - topological proof and relation to
gauge fermion models

L
i

o~
A

—

genus g =0 genus g =1 genus g =2
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- . Edge-Binary Wick Models (of arbitrary degree)
Auxiliary Material for Planar & Surface Kasteleyn Conjecture for Dimer Model on Surface Graphs

Dimer Model on Surface Graphs (II)

Partition Function of Dimer Model, 7;; = 0, 1, on a surface graph G
2(Giz) = £ I per (z)™

Theorem: (formulation of Cimasoni, Reshetikhin)
2(G:i2) = £ Y Arf(g%, )2 (o) PF(A%(2))
—_—

—+1; m—independent; depends only on [s]

@ 7 is a reference dimer configuration

@ s is a Kasteleyn orientation; [s] equivalence classes of the Kasteleyn orientations,
228 of them

@ £5(7) = £1 defines total signature of the dimer configuration 7 wrt the
Kasteleyn orientation s

@ g5 () is a well-defined quadratic form associated with s, 7o and « is a closed
curve on G; Arf(qs ) is the Arf-invariant of the quadratic form.
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- . Edge-Binary Wick Models (of arbitrary degree)
Auxiliary Material for Planar & Surface Kasteleyn Conjecture for Dimer Model on Surface Graphs

Dimer Model on Surface Graphs (lII)

Z(G:2) = 5 Yopq Arfls, )e* (o) PF(A%(2))

@ the sum over determinants can be transformed into the sum
over partition functions of Kasteleyn-fermion models

o Kasteleyn orientation is a discrete version of spin(or)
structures [from topological field theories]

@ Powerful derivation techniques from topology [homology and
immersion theories]

Generic graphical model on a surface graph is

SURFACE-DIFFICULT
Our next task is:
To classify graphical models which are SURFACE-EASY
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Edge-Binary Wick Models (of arbitrary degree)

Auxiliary Material for Planar & Surface Kasteleyn Conjecture for Dimer Model on Surface Graphs

Edge-Binary-Wick (EBW) Models and
Vertex Gaussian Grassman Graphical (VG?) models

on Surface Graphs

Main Theorem of [Chernyak,MC '09/surface]
Zesw(W)Zesw (1) = X1 Zves([s]: 1) Zves([s]; W) where

@ s = (0o;¢) corresponds to a Kastelyan/spinor orientation defined on
extended graph

@ [s] are equivalence classes (2% of them) of the Kastelyan/spinor s
orientations

d Original graph €) Extended graph f) sarface graph
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Edge-Binary Wick Models (of arbitrary degree)

Auxiliary Material for Planar & Surface Kasteleyn Conjecture for Dimer Model on Surface Graphs

EBW and VG? models on Surface Graphs (I1)

Zepw (W) Zegw (1) = 31 Zves([s]: 1) Zves([s]: W)

The multi-step proof of the main surface theorem includes

@ Extended/fat graph construction and partitioning &€ of the even generalized loop
~ configurations into closed curves [Wick structure]

@ Analysis and relation between invariant objects (quadratic forms) for the
generalized loops, [y], and spinors, [s], defined on fat graphs and respective
Riemann surfaces.

@ Term by term comparison of the relation between the partial ZEBW(['y];W) and
Zyg3([], [sl: W), where Zegw (W) = 3= 1 Zesw([7]; W) and
Zygs([sli W) = > Zye3([7], [s]; W). This results in the system of 22 linear
equations for 226 unknowns Zegw ([]; W).

@ Solving the linear equations we recover the main statement of the theorem.

@ 287c3([s]i1) = Arf(q([s])) Zesw (1), where q(s)(v) = q([s])([+]) is a
well-defined quadratic form.
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- . Edge-Binary Wick Models (of arbitrary degree)
Auxiliary Material for Planar & Surface Kasteleyn Conjecture for Dimer Model on Surface Graphs

Main “take home” message

Describe the family of surface-easy edge-binary models on an arbitrary
surface graph G (partition function is reducible to a sum of 228 Pfaffians)

@ Generate an arbitrary Vertex Gaussian Grassmann binary-Gauge
(VG®) Model on the graph

@ Fix the binary-gauge according to the Kasteleyn (spinor) rule on the
extended graph

@ Construct respective Edge-Binary Wick model on the original graph

@ Apply an arbitrary skew-orthogonal (holographic)
gauge/transformation

The partition function of the resulting model is the sum of 228 +-weighted Pfaffians.

[All terms in the sum are explicitly known.]
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Edge-Binary Wick Models (of arbitrary degree)

Auxiliary Material for Planar & Surface Kasteleyn Conjecture for Dimer Model on Surface Graphs

Where do we go from here?

@ Use the described hierarchy of easy planar models as a basis
for efficient variational approximation of generic (difficult)
planar problems. (The approach may also be useful for
building efficient variational matrix-product state wave
functions for quantum models. Dynamical Bayesian Networks:
141, tree+1, ....)

e Study Wick Gaussian models on non-planar but
Pfaffian orientable or k-Pfaffian orientable graphs (where any
dimer model on surface graph of genus g is 2%6-Pfaffian
orientable).

@ Almost Planar = Geographical Graphical Models,
Renormalization Group, Generalized BP

@ Analogs of all of the above for Surface-Difficult Problems
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